COGS 119
MATLAB for Experimental Research

Fall 2013 – Week 4
Image Processing in Matlab
Figures and Images

```matlab
>> help figure
figure(): creates a figure window
figure(H): makes H the current figure, forces it to become visible,
and raises it above all other figures on the screen. If Figure H
does not exist, and H is an integer, a new figure is created with
handle H.
```

```matlab
>> help image
image(X): displays matrix X as an image.
Each element of X specifies the color of a rectilinear patch in the
image.
```
Figures and Images

```matlab
>> x = [1 5 26 10 4];
>> figure(1)
>> image(x)
```

```matlab
>> x = [1 5 10 26 4 ; 4 26 5 1 10];
>> figure(2)
>> image(x)
```

How do the colors refer to numbers?
Indexed images in Matlab

- An indexed image consists of a data matrix X and a colormap matrix, which is $N \times 3$ array of class double containing values in the range $[0,1]$.
- Each row of the map specifies red, blue and green components of a single color.
- The color of each image pixel is determined by using the corresponding value of X as an index into the map.
- The value 1 points to the first row in the map, 2 points to the second row, and so on.
- Values of X must be integers.
Colormap

- You can use defaults or make your own.
 >>> help colormap
 colormap(MAP) sets the current figure's colormap to MAP.

- Some built-in colormaps are:
Colormap

```>> figure(3);
>> image(x);
>> colormap('autumn')
```

```>> figure(4);
>> image(x);
>> colormap('spring')
```
Colormap

- A colormap is also a matrix.

- For color images, it is an \(N \times 3 \) matrix where the three columns corresponds to the RGB (red, green, blue) indices.
Colormap

\[c = \text{colormap}('spring'); \]
\[c2 = \text{colormap}('autumn'); \]
Colormap

- The reason we don’t see much of a color range is, the color map has many possible colors (e.g. 64 colors) so we are using only a subset of the colors.
- But we can easily scale the values of the data matrix to use the full color map.

```
>> help imagesc
Scale data and display as image.
```

```
>> figure(5)
>> imagesc(x)
>> colormap('spring')
```
Colormap

- Alternatively, we can create a new image matrix that uses a large range of values (between 0 and 64) in the first place.

```matlab
>> img = round(rand(100,100)*63)+1;
>> figure(6)
>> image(img)
>> colormap(‘spring’);
```
Colormap

>> figure(3)
>> colormap('hot')

>> colormap(3, 'winter')

will change the figure whose handle is 3
Change axis elements

```matlab
>> help axis

>> figure(3);
>> axis off;
>> axis square;
```
User-defined colormaps

- We can also make our own colormaps.

```matlab
>> mycmap1 = [0 0 0 ; 0.25 0.25 0.25 ; 0.5 0.5 0.5 ;
             0.75 0.75 0.75 ; 1 1 1];

>> mycmap1 = reshape(mycmap1, 3 ,5 )';
>> figure(7);
>> axis off;
>> axis square;
>> image(img);
>> colormap(mycmap1);
```
User-defined colormaps

>> mycmap2 = [0 0 1; 1 0 0; 0 1 0; 1 0 0.5; 0 1 1];
>> figure(8);
>> axis off;
>> axis square;
>> image(img);
>> colormap(mycmap2);

>> close(figure(8));

Closes the figure window
Let’s play with colormaps

New .m file called mycolormaps.m

clear all; close all;
colormap(gray(256));
myimg = reshape(1:256,16,16);
image(myimg);
axis square;
axis off;
pause
figure(1);
for i = 1:200
 cmaps = rand(256,3);
colormap(cmaps);
drawnow
end

What does the code do?
RGB or True-color images

- An RGB image is stored as an $M \times N \times 3$ array that defines red, green, and blue components for each individual voxel.

- The color of each pixel is determined by the combination of the red, green, and blue intensities stored in each color plane at the pixel’s location.

- RGB images don’t use a separate palette or colormap.

- Graphics file formats store RGB images as 24 bit images, where red, green and blue components are 8 bits each.

- This yields a potential of 16 million colors.
Loading images

```matlab
>> g1 = imread('grumpycat.jpg');
>> image(g1);
>> axis off;
>> axis image;
```
Operations with images

- You can do all matrix operations with images after they are loaded.

```matlab
>> g3 = g1(:,1300:1900,:);
>> image(g3)
>> axis image
>> axis off
```
Operations with images

g4 = repmat(g3,2,10);
>> image(g4)
>> axis image
>> axis off
RDB images classes

- An RGB array can be of class double, uint8 or uint16.
- Double:
 - Each color component is a value between 0 and 1.
 - A pixel whose color components are (0,0,0) is displayed as black.
 - A pixel whose color components are (1,1,1) is displayed as white.

- Unsigned integer
 - Colors will be represented by integers 0 to 255 (for a total of 256 which 2^8)
 - The three color components for each pixel are stored along the third dimension of the data array.
 - For example, the red, green, and blue color components of the pixel (24,78) in g1 are stored in g1(24,78,1), g1(24,78,2), and g1(24,78,3), respectively.
Manipulate colors

```matlab
>> g5 = g1;
>> g5(:,:,:,3) = 0;  % no blues
>> g5(:,:,:,2) = 0;  % now no greens either
>> figure(5); image(g5);
>> axis off; axis image;
```
Manipulate colors

```
>> g6 = g1;
>> g6(:,:,1) = 0;  % no red
>> figure(6); image(g6);
>> axis off; axis image;

>> g7 = g5+g6;
>> figure(7); image(g7);
>> axis off; axis image;
```
Manipulate brightness

```matlab
>> g8 = g1/3;
>> figure(8); image(g8);
>> axis off; axis image;

>> g9 = g1*3;
>> figure(9); image(g9);
>> axis off; axis image;
```
Manipulate brightness

```matlab
>> g10 = [g9 g1 g8];
>> figure(10); image(g10);
>> axis image; axis off;
```
Manipulate both color and brightness

```matlab
>> g11 = g1;
>> g11(:, :, 3) = g1(:, :, 3) * 3;
>> g11(:, :, 2) = 0;  % no greens
>> g11(:, :, 1) = g1(:, :, 1)/5;
>> figure(11); image(g11);
>> axis off; axis image;
```
Convert RGB image to indexed image

```
>> g1 = imread('grumpycat.jpg');
>> [indg1 cmapg1] = rgb2ind(g1,256);
>> indg1flip = fliplr(indg1);
>> indg1both = [indg1 indg1flip];
>> figure;imagesc(indg1both); axis off; axis image
>> colormap('gray');
>> colormap(cmapg1);
```
Convert indexed image to RGB image

```matlab
myimg = reshape(1:10000,100,100);
cmap = rand(10000,3);
figure; image(myimg); axis off; axis square;
colormap(cmap)

newrgbimg = ind2rgb(myimg,cmap);
figure(2);image(myimg);
axis square; axis off;
```
hold on

>>figure(3);
>> hold on;
>> imagesc(myimg)
>> axis square ; axis off
>> colormap('spring');

>> myimg2 = myimg(50:75, 50:75);
>> imagesc(myimg2);
hold on

>> imagesc(25,50,myimg2);
>> hold off;
Exercise

- Create matrix A, which is a 50 x 50 matrix that has a randomly generated number on the odd rows and odd columns and zeros elsewhere (hint: one way to do it us use `rand` and `eye`).

- It should look like the following when displayed using figure and `imagesc` (axis off, axis square) (hint: you may need to change the colormap).

- Save the image (from the figure window, or using saveas) as `YourLastName_checkerboard.jpg`.

![Checkerboard Image](image)
Exercise

```matlab
>> x = eye(2);
>> x = rand() * x;
>> y = repmat(x, 25, 25);
>> figure;
>> imagesc(y);
>> axis off; axis square;
>> colormap(‘gray’)
```